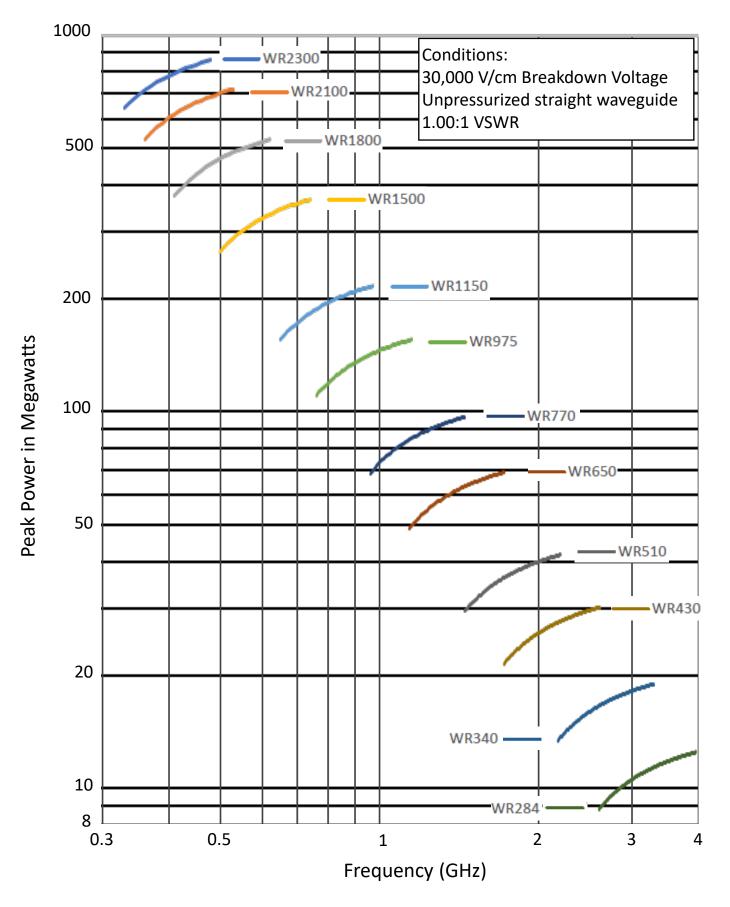


RIGID WAVEGUIDE TECHNICAL DATA

© All rights reserved by Microwave Techniques, LLC For more information, contact: sales@microwavetechniques.com

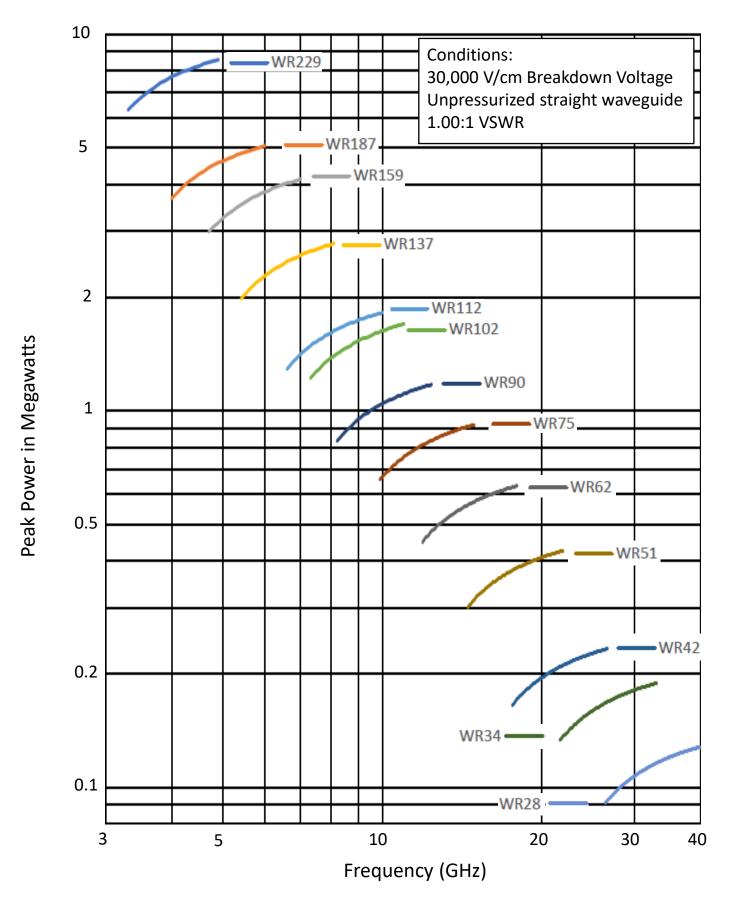
Rigid Waveguide Typical Specifications										
Waveguide Size		Cut-off for TE ₁₀ Mode	Recommended Frequency Range		Attenuation	Avg Power @ 25°C above Amb.	Material Alloy	Inside Dimensions	Outside Dimensions	Wall Thickness
EIA	IEC	(GHz)	(GHz)		dB/100'	(kw)	Alloy	Inches (mm)	Inches (mm)	Inches (mm)
WR2300	R3	0.257	Min Max	0.321 0.489	0.048 0.036	1290 1738	Al	23.00 (584.2) 11.50 (292.1)	23.38 (593.8) 11.88 (301.7)	.188 (4.8)
WR2100	R4	0.281	Min Max	0.351 0.535	0.056 0.041	1017 1379	Al	21.00 (533.4) 10.50 (266.7)	21.38 (543.0) 10.88 (276.3)	.188 (4.8)
WR1800	R5	0.328	Min Max	0.410 0.624	0.074 0.052	658 928	Al	18.00 (457.2) 9.00 (228.6)	18.38 (466.8) 9.38 (238.2)	.188 (4.8)
WR1500	R6	0.393	Min Max	0.492 0.749	0.096 0.071	422 572	Al	15.00 (381.0) 7.50 (190.5)	15.25 (387.4) 7.75 (196.9)	.125 (3.2)
WR1150	R8	0.513	Min Max	0.641 0.977	0.148 0.109	212 287	Al	11.50 (292.1) 5.75 (146.1)	11.75 (298.5) 6.00 (152.4)	.125 (3.2)
WR975	R9	0.605	Min Max	0.757 1.153	0.197 0.144	137 186	Al	9.75 (247.7) 4.875 (123.8)	10.00 (254.0) 5.13 (130.2)	.125 (3.2)
WR770	R12	0.766	Min Max	0.958 1.460	0.292 0.214	74.4 101	Al	7.70 (195.6) 3.85 (97.8)	7.95 (201.9) 4.10 (104.1)	.125 (3.2)
WR650	R14	0.908	Min Max	1.135 1.729	0.386 0.286	48.7 64.9	Al/Cu	6.50 (165.1) 3.25 (82.6)	6.75 (171.5) 3.50 (88.9)	.125 (3.2)
WR510	R18	1.157	Min Max	1.446 2.204	0.590 0.440	26.5 35.0	Al/Cu	5.10 (129.5) 2.50 (63.5)	5.35 (135.9) 2.75 (69.9)	.125 (3.2)
WR430	R22	1.372	Min Max	1.716 2.614	0.779 0.581	17.4 22.8	Al/Cu	4.30 (109.2) 2.15 (54.6)	4.46 (113.3) 2.31 (58.7)	.080 (2.0)
WR340	R26	1.736	Min Max	2.170 3.306	1.171 0.868	9.92 12.9	Al/Cu	3.40 (86.4) 1.70 (43.2)	3.56 (90.4) 1.86 (47.2)	.080 (2.0)
WR284	R32	2.078	Min Max	2.597 3.958	1.650 1.233	6.29 8.04	Al/Cu/Br	2.84 (72.1) 1.34 (34.0)	3.00 (76.2) 1.50 (38.1)	.080 (2.0)

- Cut-off frequency for the TE₁₀ Mode corresponds to the wavelength that is equal to 2 times the guide width (a). Energy will not effectively propagate in the waveguide below this frequency.
- The Recommended Frequency Range corresponds to wavelength that is between 1.6 times the
 guide width and 1.05 times the guide width (1.25*F_{Cut-off} to 1.9*F_{Cut-off}). This range may be
 extended however attenuation will increase significantly below this frequency range and higher
 order waveguide modes may start to propagate above it.
- Attenuation is based on 6061-T6 aluminum waveguide with a 63 μin surface finish.
- Average power is based on unpressurized painted aluminum waveguide under free convection cooling with an operating temperature that is 25° C above the ambient temperature. Cooling options should be considered if the waveguide will be operating at higher power levels, please consult the factory.

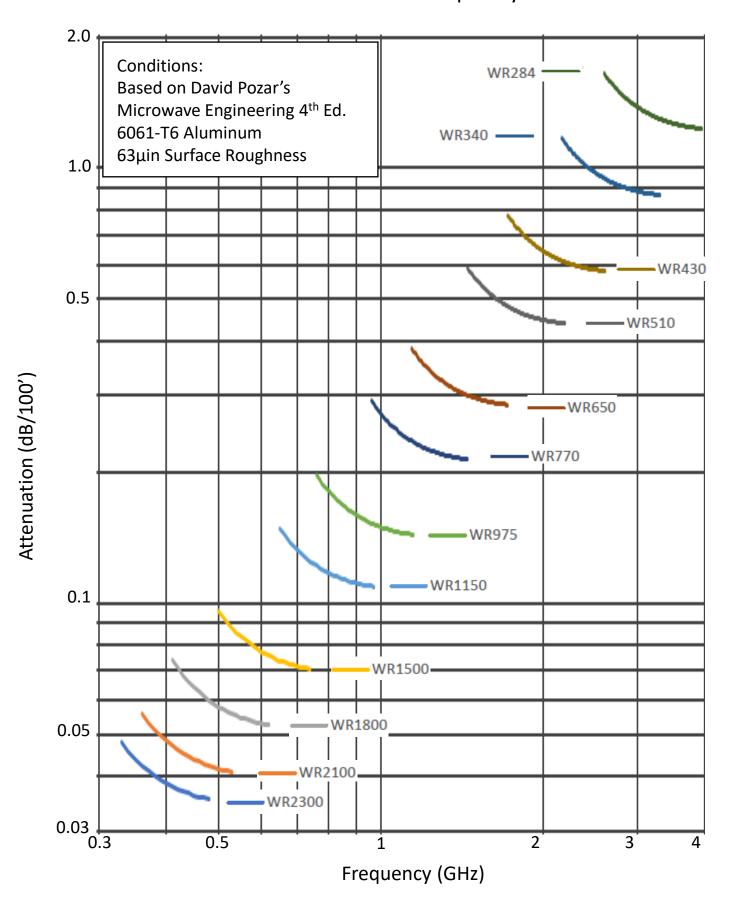


Rigid Waveguide Typical Specifications											
Waveguide Size		Cut-off for TE ₁₀ Mode	Recommended Frequency Range		Attenuation	Avg Power @ 25°C above Amb.	Material Alloy	Inside Dimensions	Outside Dimensions	Wall Thickness	
EIA	IEC	(GHz)	(GHz)		dB/100'	(kw)		Inches (mm)	Inches (mm)	Inches (mm)	
WR229	R40	2.577	Min Max	3.221 4.909	2.212 1.691	4.25 5.26	Al/Cu/Br	2.29 (58.2) 1.145 (29.1)	2.42 (61.3) 1.27 (32.3)	.063 (1.6)	
WR187	R48	3.152	Min Max	3.941 6.005	3.418 2.604	2.60 3.14	Al/Cu/Br	1.872 (47.5) .827 (21.0)	2.00 (50.7) .95 (24.2)	.063 (1.6)	
WR159	R58	3.712	Min Max	4.639 7.070	4.173 3.088	2.06 2.50	Al/Cu/Br	1.59 (40.4) .795 (20.2)	1.72 (43.6) .92 (23.4)	.063 (1.6)	
WR137	R70	4.301	Min Max	5.377 8.193	5.758 4.237	1.51 1.78	Al/Cu/Br	1.372 (34.8) .622 (15.8)	1.50 (38.0) .75 (19.0)	.063 (1.6)	
WR112	R84	5.260	Min Max	6.575 10.019	8.144 5.948	1.12 1.28	Al/Cu/Br	1.122 (28.5) .497 (12.6)	1.25 (31.7) .62 (15.8)	.063 (1.6)	
WR102	-	5.786	Min Max	7.232 11.020	8.727 6.286	1.05 1.19	Al/Cu/Br	1.02 (25.9) .51 (13.0)	1.15 (29.1) .64 (16.1)	.063 (1.6)	
WR90	R100	6.557	Min Max	8.196 12.490	11.695 8.420	0.814 0.887	Al/Cu/Br	.90 (22.9) .40 (10.2)	1.00 (25.4) .50 (12.7)	.050 (1.3)	
WR75	R120	7.869	Min Max	9.836 14.988	14.384 10.207	0.709 0.755	Al/Cu/Br	.75 (19.1) .375 (9.5)	.85 (21.6) .48 (12.1)	.050 (1.3)	
WR62	R140	9.488	Min Max	11.860 18.072	19.471 13.655	0.604 0.624	Al/Cu/Br	.622 (15.8) .311 (7.9)	.72 (18.3) .41 (10.4)	.050 (1.3)	
WR51	R180	11.571	Min Max	14.464 22.041	26.648 18.554	0.525 0.532	Al/Cu/Br	.51 (13.0) .255 (6.5)	.61 (15.5) .36 (9.0)	.050 (1.3)	
WR42	R220	14.051	Min Max	17.564 26.764	41.283 29.628	0.451 0.452	Al/Cu/Br	.42 (10.7) .17 (4.3)	.52 (13.2) .27 (6.9)	.050 (1.3)	
WR34	R260	17.357	Min Max	21.696 33.061	50.253 34.572	0.418 0.418	Al/Cu/Br	.34 (8.6) .17 (4.3)	.44 (11.2) .27 (6.9)	.050 (1.3)	
WR28	R320	21.077	Min Max	26.346 40.146	67.500 46.516	0.378 0.378	Al/Cu/Br	.28 (7.1) .14 (3.6)	.38 (9.7) .24 (6.1)	.050 (1.3)	

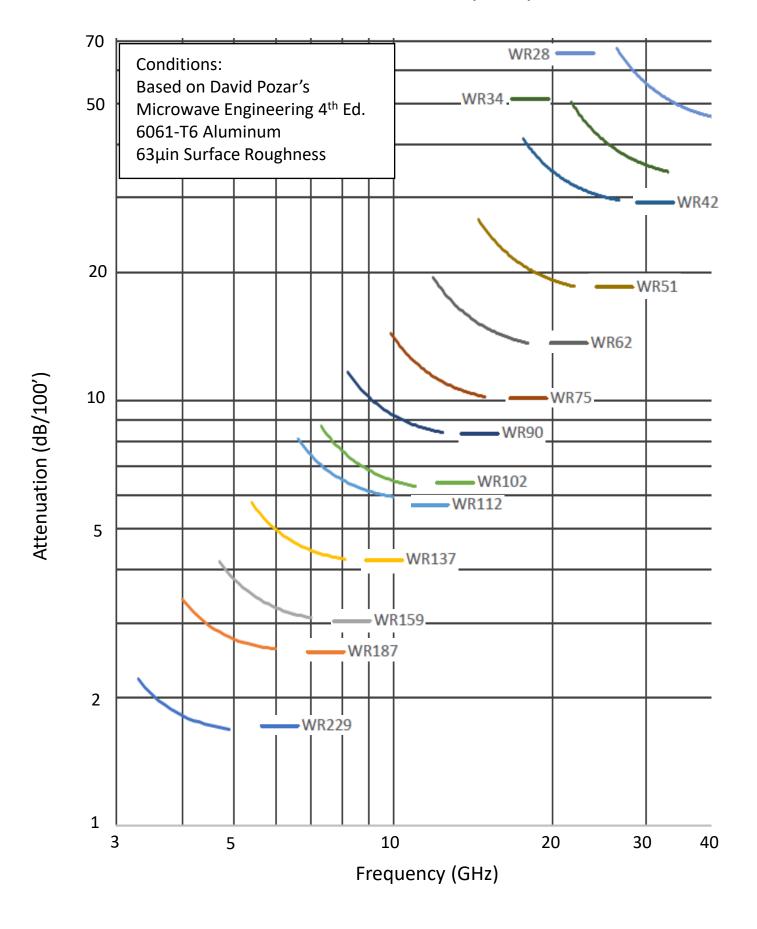
- Cut-off frequency for the TE₁₀ Mode corresponds to the wavelength that is equal to 2 times the guide width (a). Energy will not effectively propagate in the waveguide below this frequency.
- The Recommended Frequency Range corresponds to wavelength that is between 1.6 times the
 guide width and 1.05 times the guide width (1.25*F_{Cut-off} to 1.9*F_{Cut-off}). This range may be
 extended however attenuation will increase significantly below this frequency range and higher
 order waveguide modes may start to propagate above it.
- Attenuation is based on 6061-T6 aluminum waveguide with a 63 μin surface finish.
- Average power is based on unpressurized painted aluminum waveguide under free convection cooling with an operating temperature that is 25° C above the ambient temperature. Cooling options should be considered if the waveguide will be operating at higher power levels, please consult the factory.



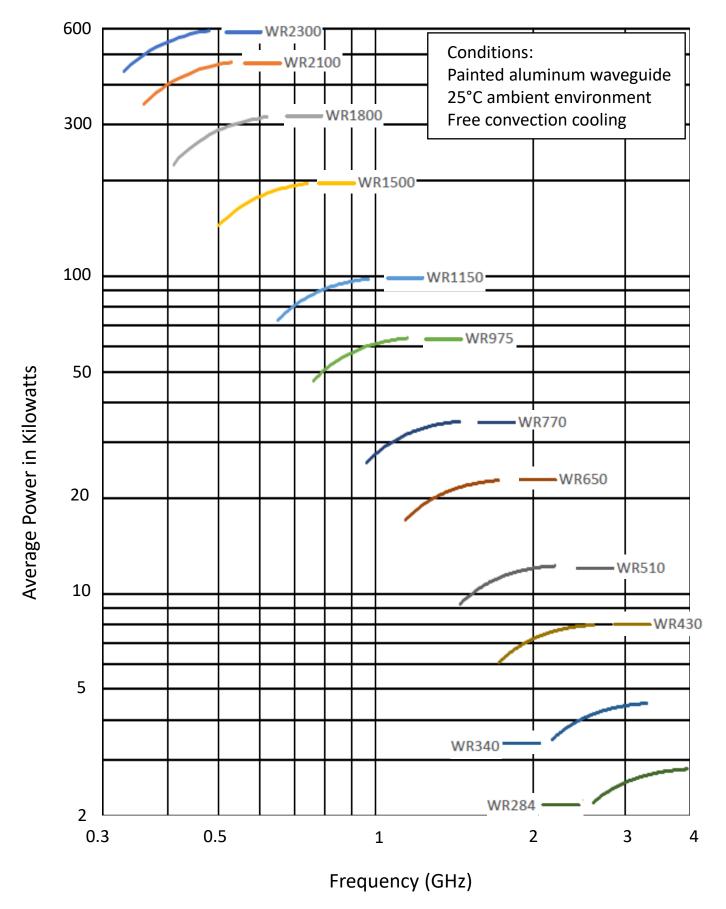
Rectangular Waveguide Peak Power Handling vs Frequency



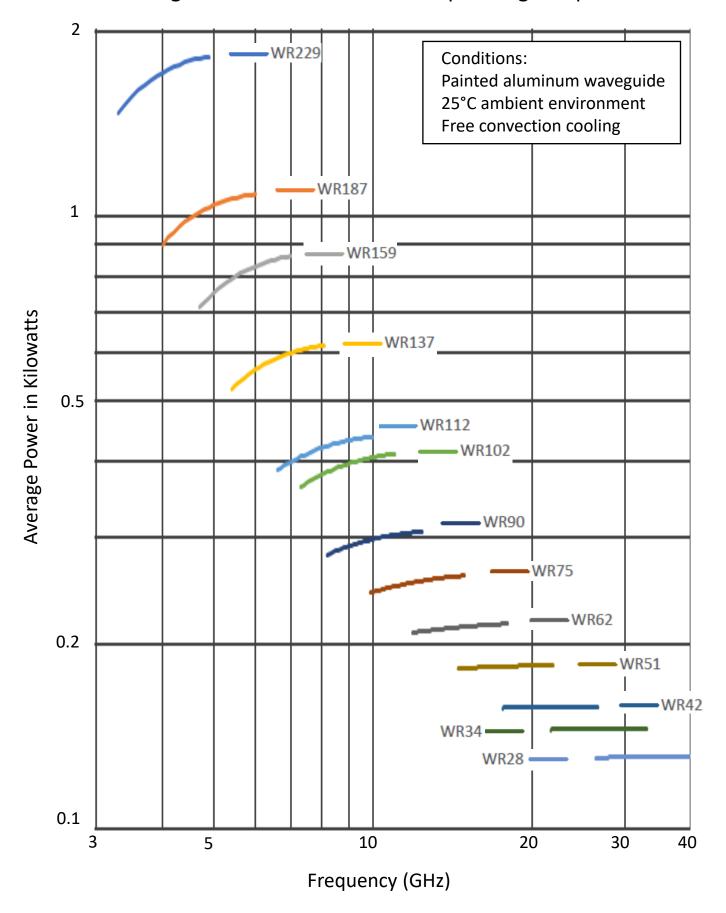
Rectangular Waveguide Peak Power Handling vs Frequency



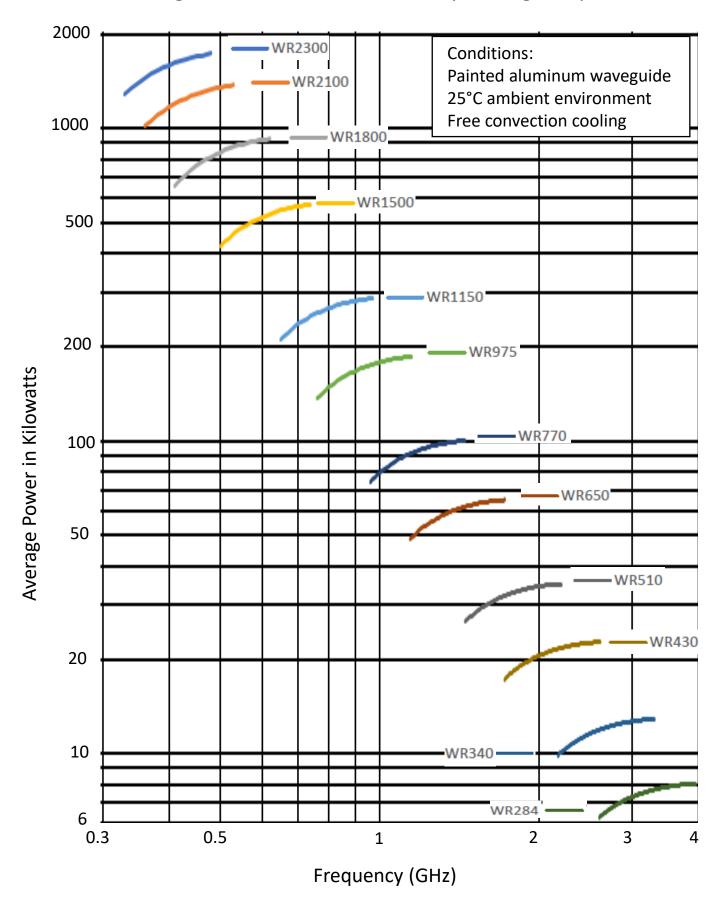
Rectangular Waveguide Attenuation vs Frequency



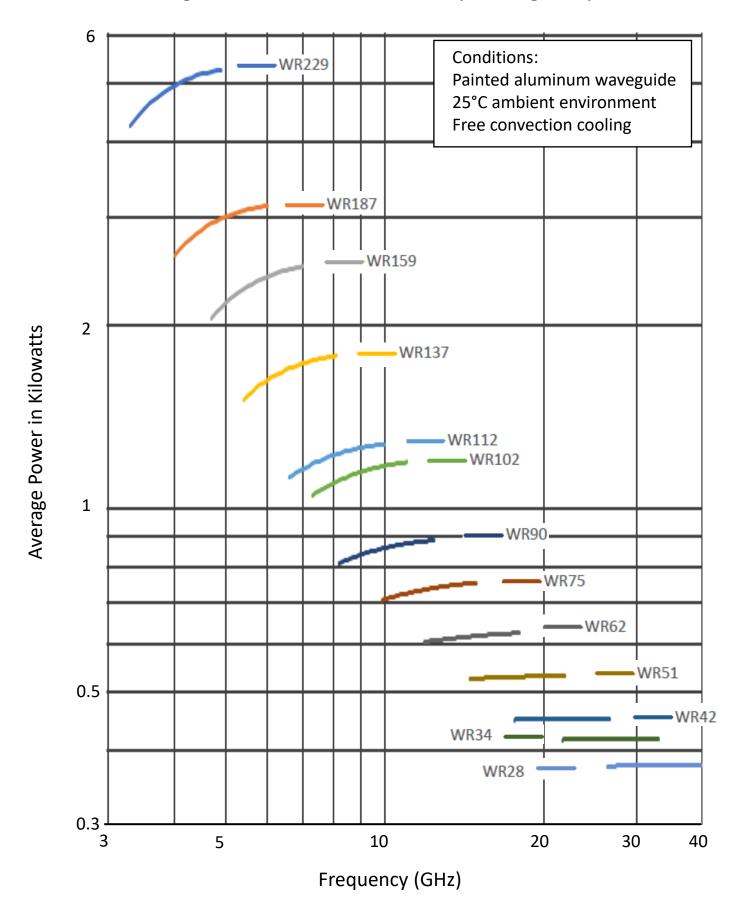
Rectangular Waveguide Attenuation vs Frequency



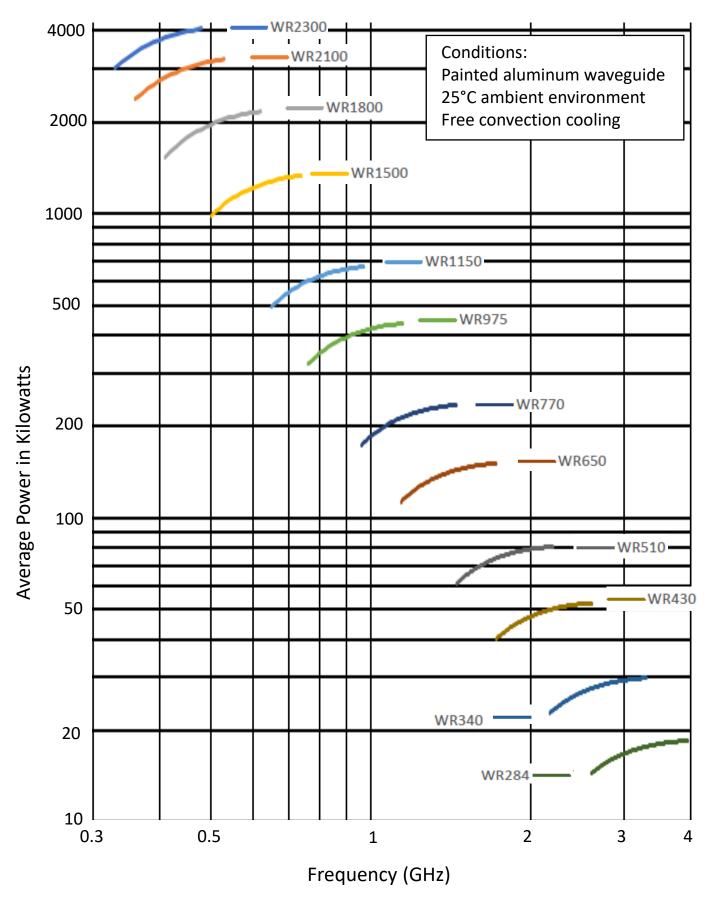
Rectangular Waveguide Average Power Levels for a 35°C Operating Temperature



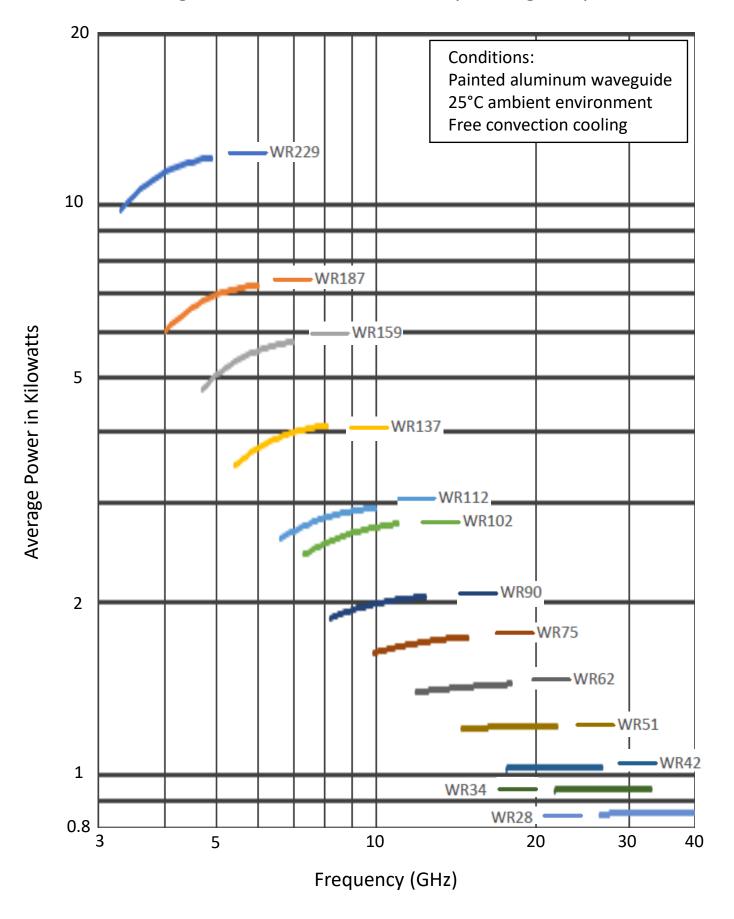
Rectangular Waveguide INDUSTRIES MICROV Average Power Levels for a 35°C Operating Temperature



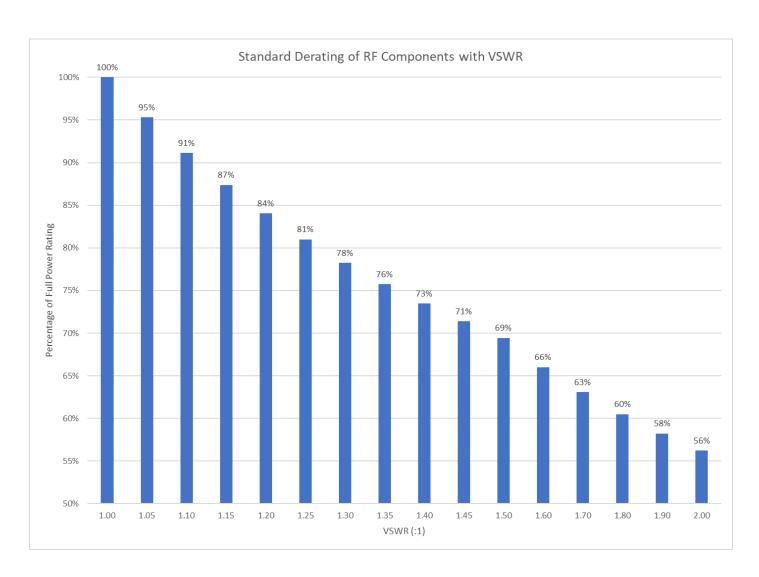
Rectangular Waveguide Average Power Levels for a 50°C Operating Temperature



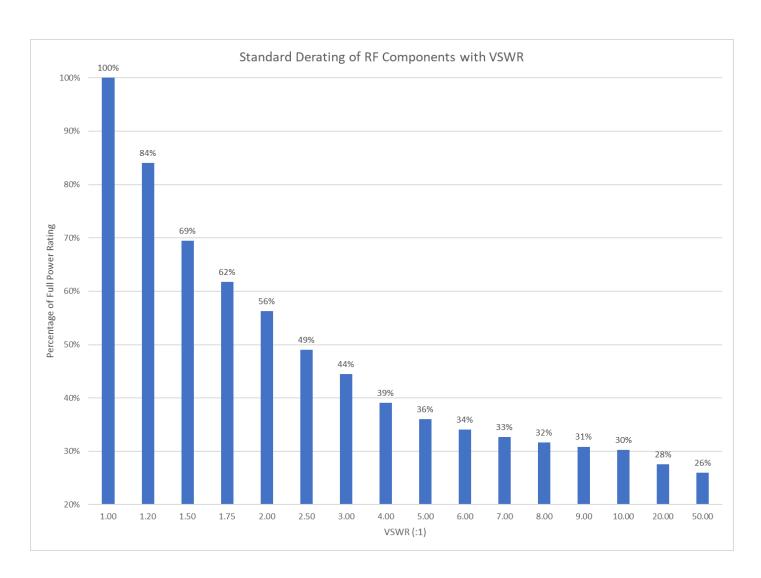
Rectangular Waveguide INDUSTRIES MICROV Average Power Levels for a 50°C Operating Temperature



Rectangular Waveguide Average Power Levels for a 75°C Operating Temperature



Rectangular Waveguide INDUSTRIES MICROV Average Power Levels for a 75°C Operating Temperature


Derating of Components for VSWR (Moderate VSWR levels)

- Peak and average power ratings provided are based on operation into a proper terminating load that ensures a low Voltage Standing Wave Ratio (VSWR) within the waveguide.
- The peak power rating will quickly degrade with elevated VSWR levels by a derating factor of $\left[\frac{(VSWR+1)}{2*VSWR}\right]^2$. This is shown above for various VSWR levels. Voltage breakdown and permanent physical damage to the waveguide components will result if this derating factor is not considered.
- The derating factor will also apply to average power ratings creating points of high temperature on the waveguide. Conduction will assist with limiting the impact on the derating of the average power but should still be considered as part of the overall system design.
- Consult the factor for operation of components into high VSWR terminating impedances.

Derating of Components for VSWR (High VSWR levels)

- Peak and average power ratings provided are based on operation into a proper terminating load that ensures a low Voltage Standing Wave Ratio (VSWR) within the waveguide.
- The peak power rating will quickly degrade with elevated VSWR levels by a derating factor of $\left[\frac{(VSWR+1)}{2*VSWR}\right]^2$. This is shown above for various VSWR levels. Voltage breakdown and permanent physical damage to the waveguide components will result if this derating factor is not considered.
- The derating factor will also apply to average power ratings creating points of high temperature on the waveguide. Conduction will assist with limiting the impact on the derating of the average power but should still be considered as part of the overall system design.
- Consult the factor for operation of components into high VSWR terminating impedances.